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SUMMARY

A new solution of two-fluid hydromagnetic equations is
obtained in the form of large amplitude nonlinear ion waves.
The magnetic field vector of such a wave rotates and changes
its magnitude simultaneously. There exists experimental evi-
dence of these nonlinear oblique waves propagating in cosmic
space. A new mechanism of plasma penetration into the magne-
tosheath and into the magnetosphere is also suggested - average
plasma flow due to the nonlinear character of these waves.
Nonlinear ion waves of relativistic velocities are also con-
sidered giving a new mechanism for cosmic rays generation. As
an example the acceleration of cosmic rays in a solar flare is
computed.

1. Nonlinear Hydromagnetic Waves. The Nonrelativistic Case.

The initial equations are two fluid electron-ions equations
of cold plasma with a magnetic field. High amplitude large-scale
periodic waves are sought for. Inasmuch as the ion waves are
large-scale, two assumptions are made: 1) electron inertia is
neglected considering that the motion velocity of wave is sufficiently
low (of the order of Alfvén velocity), i.e.

o1
2) in the law of transverse momentum conservation, we have

nu (Mvg - mv,) = i'{'ﬁ(_llﬁ,l_li‘l)_

4 (l)

(where H"° is the longitudinal field and HLo,x,H¢o,y are arbitrary




constants) we have neglected the electron pulse as compared
with the ion pulse.

Expressing v and v; of these relationsby H & substituting
in the Maxwell equation rol H ==4nenc'(vi— v , we find the equations
for the modulus and phase of the magnetic field H

(H == ]Ix + l'l.[v == ]1_:_0)»(22) ef'F(f); H,Loz = HZJ_(\,x ‘{' II:J_O.U: (za)
}' e (,[“2 — Q() sin @ ’I— Q( cos @

@+ (mt— ”)+-§: {(Q1 — w?)cos @ + Q2sing} = 0. (2b)

l :
Here ll==1%~%£11——kﬁ‘- is the dimensionless longitudinal
velocity;Q = Q, +“iQ, is the complexone & p,? and uj? are the
real integration constants.

ho==dh/dve==py udr/[dz

Let us denote (Qi— wP) cosq@-FC2sing py o then from (2a) we
obtain d¢/dv== ds/d\A. Bubstituting this value into (2b) we shall
obtain

l.
%?*F(HM‘*HY+S/W:=O- (3)
A

Suppose that for ¢ = 0 (i.e. at HiHi) the field modulus
assumes a certain value A = A, (A, being in this way one of wave
constants). Then the solution of equation (3), which passes
through point ¢ = 0,2 = Xy, is

A’U o 1 [ “—Lz '). “Y 2
s(h) = {(01 - i)+ D 1,(1 g pzr‘) (1 == 2y —

—H (7J~~-;.0'v)}.

ds

2
Substituting it in (2a) and taking into account that(:;) == |U]2— 5%
we obtain for the square of field modulus,i.e. for the mag—'p

netic field energy g = A2, the equation

(4)

where

11/ 2 2 2
] == —_—— P Ei. — "o p"-" . ] “
L {Qxlo—}- 5 [(1 { > ““2) (¢~ go)— _4__(;),2 — £2) J} --1Q|2,
g = M\




Eq. (4) is easily integrated in elliptic functions. If,
for instance, equation U = 0 has two real positive roots a and
B (a > g > B) and two other complex roots, the connection bet-
ween T and g is given by the elliptic integral ([1], formula
3.145.2)

dz N c
T (_(17-—“5 E Rl TR, (s

2= (by— b2)?*

a—B
u==2arcctg [b2(a—g)/ (L1 X (g —p))], k= —V

bibz ’
b =n>+ (m —a)%;  bf=r-t (m—p)%
Inverting this integral we obtain
_e -+ ﬁ where p_. b Zerzz(ﬂ/b b k) - (6)

{4 B B2l — en (Yorar, 1)

When the imaginary part n of the complex conjugate roots
approaches zero, k + 1, we have a nonlinear solitary pulse [2].
On the contrary, with the confluence of the real roots, o =+ B,
and we have k + 0. In this extreme case of low-amplitude waves
(o = B) the elliptic sine changes to an ordinary sinusoid; thus
we obtain both branches of low-amplitude waves, namely the Alfvén
branch and the magneto-acoustic branch.

Let us underscore some of the special features of the
solution thus obtained.

1. Contrary to nonlinear solitary pulses, in periodic
waves the plasma has a certain mean velocity zzr:Sudr relative
to the magnetic field, i.e. the plasma penetrates into the mag-
netic field. Postulatlng(ﬂl/aw:»—qu = () and, therefore E = const,
we have linked the coordinate system with the magnetic field of
the wave. Consequently, the nonzero mean value for the period of
velocity u = 1 + p,?/2-(1 - A?) implies that on the average the
plasma moves relative to the field H. 1In linear approximation
there is no such average plasma flow relative to the field. The
average for the period from sine is zero. Similarly, the on-shore
sea waves carry with them a specific momentum and flow of matter.
Namely, at high amplitude of waves (in a storm) the nonlinear
drift effect is greater also. A clear proof of the drift are the
random objects, for instance pieces of wood, carried by the wave
from the open sea to the shore.

Therefore, the nonlinear periodic waves constitute a form
of plasma motion relative to the magnetic field. The compressed
plasma penetrates into the magnetic field of the wave; this mag-




netic field is variable both in magnitude and direction. In
this respect, nonlinear waves are essential in the turbulent
transitional layer between the undisturbed solar wind and the
magnetosphere: the magnetic field becomes variable and the
plasma passes through it toward the magnetosphere.

Here the analogy with sea waves is not complete., The
presence of the magnetic field changes considerably all the
properties and the structure of a nonlinear wave. First of
all, an oblique wave is always a wave with field rotation.

It can be said that the plasma incident upon the magnetosphere
does not break through the field but "twists its way" through
it.

Secondly, the nonhomogenous field of a wave, especially
of combination of nonlinear waves, retains the fast particles. Such
a method of plasma retention by nonlinear waves can be used in
plasma experiments. Let us note that_in electron waves the
field amplification is of the order vM/m > 43, so that there
emerge very strongly retaining fields. Possible also, besides
the magnetic retention is the electric retention, namely the
trapping of particles in electric potential wells.

The polarization of nonlinear waves is essentially dif-
ferent from the linear case. Having written g as sin (¢ + 8) |Q]
we have the following complex relation between ¢ and A:

t 1 '
sin(o -+ )= 151 {0k + Al ) e =2~

2
— “_Z—_ (A — Aob) }’

i.e. a more complicated polarization curve than the ellipse
corresponding to linear waves.

Finally, let us underscore a general structural property
of nonlinear waves: from the first integrals nu = const and
_ oy it follows that plasma density is highest in
u= 1+"2—~ (1"')\2)

the magnetic field maximum, and lowest in the magnetic field
minimum.

The shape of the interplanetary field magnetograms measured
on satellites, the curves of field vector rotation, the ratio
between the constant and the variable field components (Explorer
[3] Mariner-4 [4]1, 0GO-1.3 [5]1), all of them bear witness to the
nonlinear nature of waves observed in the interplanetary medium
and in the transition region [magneto sheath].




2. Relativistic Ion Waves and the Origin of Cosmic Rays.

when Alfvén velocity approaches llght velocity ¢, 1ions
accelerate in nonlinear waves to energles of hundreds of Mev.
The nonlinear nature of the wave is the prerequisite condition
for acceleration, for only in nonlinear wave is the particle
velocity of same order as the wave velocity. Particle veloci-
ties are low even in the fastest linear wave.

In the general relativistic case the two-fluid magnetic
hydrodynamics equations can yield the following system of dif-
ferential equations:

§=2B(pq), p=-—A(pq), (7)
nc2 0 — B2 y
where g =M,/ p o Hubeost8 — ;B =
YH 10 c
¥=1—f

A = q(2clg?0 — S  y2A2 4 2p%q) + Re Sp 4 p2 (22 — 2¢9) -+ Sy
2
B = p<2 cAg?0 —2-——— S 4y 4 2[32(1) -+ I Sy;
A2

and §S,ResS,, S, ImS, are arbitrary constants,

dg dg B3 1
gs==-—=0G-—" e G = 0820 — B2 — .~ 2. .
dv dz ﬂ ( P) hmeny sin 0 A B
Inasmuch as.%é::%?,the system (7) is Hamiltonian and has
p q

for the first integral

IS, p -+ f; g2+ q (P22 -+ Sy + Re Sp) -

1 0— B2 S 2 »
+ }2[ Y"-Coll_n? ()E o _2~] + 'L A= const. (8)

For the field modulus we obtain the equation

‘ ‘ 1 dy? :
'quSP ‘_p[‘?"\ﬁ - P72 -} Sy - Re )p:l] w 2 d}:' <1”+ >OHNOY§ ’

¥
(H’—-Eagvyﬁ2h~2q-kanmﬂis the energy). (9)

(Y

In the particular case of ImSp = 0, integral (8) is reduced
to a quadratic equation relative to q:

ag?4rg+d=0.




Taking the quantity o = (x? - 4ad)'/, for a new unknown
function, we convert (9) to the following simple form:

p== (o0 — K)o (10)

(K. is a constant), where p? is expressed by a four degree
poiynomial relative to o, and the solution of equation (10) is
expressed by a linear combination of elliptic integrals.

Let us show how to determine the limits of particle accele-
ration in such a wave. We will illustrate it by the very simple
example of a compression "soliton".

In the case of a nonlinear solitary pulse (soliton) (i.e.
when the plasma is not perturbed at infinity), 2 = 1; lpl =pi=E=0
W=Mc (p and- p, are the transverse and longitudinal momenta), the
wave constants will respectively take the following values:

2

Re Sp = —2ctg?0; Sy = p2 42— R, -2 Tm Sp = 0;

v
2 H,
S=14- {32+2-E—RJ_‘2; Ry = R sin0; R i (e=1).
¥ VannoM
And subsequently
14 p2
p=(0— A)?-P(0), where P(s) = —0?+2A-0-—"—+
Y
4o A1 D)2 ~ N (11)
+ -;;[W—_,{—— Joa=t4 R Gagro.

,YZ
2p2A
easily integrated in elementary functions.

With substitution by variable v= ¢—A Eg. (10) is

The amplitude of the nonlinear solitary pulse compression
o+ and the minimal field value in a nonlinear solitary pulse
refraction ¢ are determined as the roots of equation P(c) = O0:

A28
- ALER=E

fee. no= PAEUEE)

S 7

4 T

Further relations for the extreme points of the wave
coincide with those obtained in [6], where the author has inves-
tigated the particular case of nonlinear solitary pulses, limi-
ting himself to the extreme points and without solving the
differential wave equations.




First of all, let us find the maximum velocity for the
nonlinear solitary pulse. At infinity cos ¢ = 1, i.e. ¢ = 0.
At this point for ¢ = 0 d*(cos ¢)/dA? < 0. By differentiating
twice the expression for cos ¢ as a function of A, which fol-
lows from (8), we find B < Bpax = R/YRZ+1. Substituting this
maximum velocity in relation (12) we obtain

A = 3 + 4RZ, (13)

Now, let us consider that relativistic nonlinear solitary
pulses propagate toward the initial field only at a sufficiently
small angle. At an angle, larger than the limit angle, change
over takes place and the motion becomes multiflow.

The condition m/n=1-P;/pW >0 in the momentum maximum
at cos ¢ = - 1 yields

g ’Yz 1—)2
— == = > 0,
n RS (T (14)
wherefrom, using (13):
sin20 <~§1——., (15)
A1+ 12)

The particle energy is

W == I sin?0 [ [y2(A* — 2q - 1) -}- R "] (Snnog) .

In an unperturbed plasma we have Wmin==IPFsin®0R ~2/8xng = Ac2.

The energy in the momentum maximum (cos ¢ == —1; 2 = 3 4 4R?) we have
iz 1 16 '
Vo [ (1 <R32-~B‘4],
nax 85 ~,'1(‘l 4 R‘*") R24-1 ( 4 )2 L
i.e.

AW o= Ianx - IVntln = 4”02 / 8!T77r_\. (16)

As an example, let us investigate the conditions of a
strong chromospheric flare in the Sun. We postulate that H, =
= 500 gauss, n, = 10® cm~®. Then, according to formula (16),
AW = 250 Mev is the characteristic energy of solar cosmic rays.

Softer protons (for instance AW v 5 Mev), are also emitted
by a quiet Sun [7]. Let us estimate the field required for ac-
celeration: H? = 2un AW = 10"gaussz(no = 10°8 cm"a, AW = 5 Mev).

Such fields of v 100 gauss are actually characteristic for



solar regions emitting corpuscles [7].

A characteristic peculiarity of the relativistic waves
is the presence in them of the longitudinal electric field E;_
This is a potential field (rot E, = 0), and a potential well
is formed, in which ions (in the' rarefaction non linear solita-
ry pulse mlnlmum) and electrons (in the condensation non linear
solitary pulse maximum) effecting there a finite motion, are
trapped. If only for the fact, that trapped particles move
along together with the wave, they have also a considerable
kinetic energy. Let us evaluate it for the simplest case of
the condensation of nonlinear solitary pulse

w_ HeMc

Mec? 4rtng

The energy of a trapped particle is lower than the
energy of a particle accomplishing an infinite motion, but
is of the same order. When the wave is destroyed the trapped
particles excape into the surrounding plasma, gnerating also
cosmic rays.

All the results of this article can be generalized for the
case of a hot plasma, taking into account the electron and ion
pressure. Then, only the equations of particle motion along the
axis 0Z undergo a change. Pressure will introduce into them
the additional term 1/ndp/dz, and, accordingly

w4 B (52 oyt (s o)

where vyi == ¢p /¢y, is the ratio of heat capacities and v =xT./Mu¢

is the inverse Mach number for acoustic waves. The electronic
pressure is part of this formula since the wave velocity of ions
is lower than the thermal velocity of electrons and higher than
that of ions.

The method that made it possible to find the first integral
of Egqs. (2) can be also applied in the presence of pressure:

1 v2y?
SA === — n— w2Ydr2 = ~~{. -
5§ (=) i

- ——2— + wtu } -]- const,

TV v —

i d)?

N N . . . o e - o 1232 .- “y2
Substituting this expression into equation 3 g ~ | Q1% — (),




9
we obtain a differential equation for u. With a special
selection of constants the solution of this equation can be
described by means of a double-humped curve.

As may be seen from the formula for u, the change over
effect is not observed in waves with pressure, no matter what
the parameter values.

In the isothermic case:

1 v u?
l-*—~(¢lzl LT 2u—--—)»C.
ot = Flm 5 b

* * * THE END % * *

I.Z2.M.I.R.A.N. Manuscript received
7 February, 1967.
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